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Highlights
Rapid advances in genomics,
phenomics, and molecular biology
are accelerating crop breeding into
the era of artificial intelligence (AI).

Addressing the formidable challenge of
managing the 'data deluge' is crucial for
transitioning from disparate datasets to
an integrated data infrastructure in AI-
enabled plant breeding.

Although AI has revolutionized various
aspects of crop breeding, such as
phenomics, variant calling models, gene
discovery, genomic selection, and gene
editing, there is a pressing need to
Harnessing cutting-edge technologies to enhance crop productivity is a pivotal
goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prow-
ess in big data analysis and pattern recognition, and is revolutionizing numerous
scientific domains including plant breeding. We explore the wider potential of AI
tools in various facets of breeding, including data collection, unlocking genetic
diversity within genebanks, and bridging the genotype–phenotype gap to facili-
tate crop breeding. This will enable the development of crop cultivars tailored
to the projected future environments. Moreover, AI tools also hold promise for re-
fining crop traits by improving the precision of gene-editing systems and
predicting the potential effects of gene variants on plant phenotypes. Leveraging
AI-enabled precision breeding can augment the efficiency of breeding programs
and holds promise for optimizing cropping systems at the grassroots level. This
entails identifying optimal inter-cropping and crop-rotation models to enhance
agricultural sustainability and productivity in the field.
synergize these components into an in-
tegrated breeding technology for future
crop development.
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Accelerating genetic gain in the context of emerging technologies
Enhancing crop productivity remains a formidable challenge amid surging global populations and
the escalating impact of climate change-induced weather events. According to Breeder's equa-
tion, genetic gain – a measure of increased crop productivity over time – hinges on improvements
in selection accuracy, selection intensity, additive genetic variance, and generation turnaround
time. In our prior work we advocated the utilization of specific technologies in crop genomics,
phenomics, and speed-breeding to expedite the rate of genetic gain [1]. We posit here that artifi-
cial intelligence (AI) (see Glossary), a ubiquitous force across scientific disciplines, holds promise
for accelerating genetic gain.

The current landscape of plant breeding is characterized by a 'data deluge' where data gener-
ation through omic innovations far outpaces efficient management, archiving, and analysis. Com-
pared to traditional methods, AI tools can extract more useful and less biased insights from high-
throughput sequencing and imaging data [2]. For instance, large language model (LLM)-based
ChatGPT serves as a potent chatbot that can generate intelligent text and images based on nat-
ural language input. This tool has been instrumental in posing thought-provoking questions rele-
vant to plant science [3], filling gaps left by plant experts in projects such as the 'one hundred
important questions facing plant science' [4].

Beyond text processing, there is growing interest in harnessing LLMs across all facets of plant
breeding to expedite genetic gain. Omic data, akin to specialized language input, offer a foundation
for training LLMs to comprehend biological processes at various levels. These data are poised to
play a pivotal role in predicting the value of complex traits and in uncovering biological insights
into genetic variants comprising different alleles and haplotypes that affect the phenotype of an in-
dividual in different ways. Recent advances in LLMs have spurred our examination of the current
role of AI in plant breeding and the formulation of a roadmap for its future utilization (Figure 1).
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Figure 1. A roadmap of artificial intelligence (AI)-enabled plant breeding. The far left panel depicts the source of
germplasm from a genebank that is either used directly or subjected to breeding to utilize omic analyses to generate big data
(second panel). The big data from the germplasm could uncover genes and predict breeding values (third panel), which
would characterize the gene-editing targets and optimal lines for developing next-generation cultivars. Representative AI-
based methods are identified in purple boxes. The dotted box represents methods that require development.
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Glossary
Artificial intelligence (AI): a suite of
techniques including ML, DL, and
natural language processing to simulate
human intelligence processes by
machines. These processes include
learning (the acquisition of information
and rules for using the information),
reasoning (using rules to reach
approximate or definite conclusions),
and self-correction.
Convolutional neural network
(CNN): a type of DL algorithm designed
specifically for processing and analyzing
visual data such as images and videos. It
mimics the structure and functioning of
the human visual cortex by using layers
of neurons to extract features from input
images.
Data islands: this term in the AI field
usually refers to isolated and
disconnected sets of data that are not
integrated and interconnected. A major
application of AI-enabled plant breeding
is to access diverse and comprehensive
datasets to train robust and generalized
models and predict the plant
performance to select ideal plant types
(Box 2).
Deep learning (DL): an AI component
process to train artificial neural networks
(ANNs) with multiple layers to learn a
representation of the data. Each layer of
the neural network processes the data in
a hierarchical manner by extracting
increasingly abstract and complex
features from the input to automatically
discover patterns and features from raw
data, without the need for explicit
programming.
Deep neural network (DNN): an ANN
architecture characterized by multiple
layers between the input and output
layers. In the context of plant science,
DNNs are computational models that
are used to process and analyze
complex data related to plants, their
biology, environment, and interactions.
These networks consist of
interconnected nodes (neurons)
organized into layers, where each layer
processes and extracts features from
the input data, leading to hierarchical
learning of representations.
Gene editing: a technique in molecular
breeding to precisely change the
phenotype by addition, removal, or
alteration of specific DNA sequences.
The most common gene-editing
technique is clustered regularly
interspaced short palindromic repeats
(CRISPR) with CRISPR-associated
Specifically, we delineate four key areas where AI holds the potential to expedite genetic
gain: panel selection, generation of biological big data, biological interpretation, and pheno-
type prediction.

AI-enabled characterization of germplasm resources to generate genomic big data
High-throughput advances in remote sensing and plant 'omics' have provided scientists with
large multi-dimensional datasets to work with when addressing problems. The use of machine
learning (ML) algorithms in pre-breeding strategies, regional selection, and adaptive marker-
assisted selection can boost genetic diversity and speed up the development of cultivars that
are climate-resilient. These algorithms can also maintain and restore the dynamic processes
that result in genetic variability, which is necessary for plant adaptation to changing climates [5].
Genetic gain stems from the vast biological diversity harbored within crops. There are >1750
genebanks worldwide containing >7 million germplasm accessions [6], including cultivars, land-
races, and wild relatives, and the potential of these resources remains largely untapped.
Genebank genomics, involving genome-wide genotyping of stored germplasm resources, offers
a promising avenue to better understand and utilize these valuable resources. Notably, genome-
wide genotyping data have been generated for substantial numbers of wheat, maize, and barley
accessions, totaling >80 000 [7], 4000 [8], and 20 000 [9], respectively. These datasets can serve
as a foundation for the targeted selection and optimal testing of accessions in specific environ-
ments using AI-driven predictive genomics.

A crucial initial step encompasses constructing a reference genome that serves as a foundational
resource for comparing individuals within a species. This makes it easier to identify, map, and as-
sociate allelic mutations with phenotypic variety, which helps to advance crop breeding efforts.
Sequencing technologies have produced substantial improvements, enabling the production of
more comprehensive and precise reference genome assemblies. Initiatives such as the 10 KP
plan, part of the broader Earth BioGenome Project, symbolize significant progress in this realm
[10]. This ambitious project aims to sequence 10 000 plant species, spanning representatives
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protein 9 (Cas9) which utilizes a bacterial
immune system mechanism to precisely
target and edit specific sequences of
DNA within the genome.
Genomic selection (GS): also termed
genomic prediction, GS is a modern
epoch in plant and livestock breeding to
predict phenotypes based on genomic
information. GS outperforms traditional
selection methods of in plant breeding
owing to superior selection accuracy
and potential for faster genetic gain.
Machine learning (ML): a subset
component of AI that can develop
algorithms and statistical models that
enable computers to perform tasks
without explicit instructions. ML uses an
algorithm to learn frompatterns in a large
amount of labeled data and, once
trained, predictions or decisions based
on that learning can be made in
response to new and unseen data.
Plant breeding: the science and art of
manipulating plant species to generate
desirable traits (Box 1)
Variant calling: the process of
identifying variations in a genomic
sequence by comparing it to a reference
genome or another set of genomic data.
The major types of the variants are
single-nucleotide polymorphisms
(SNPs), small insertions or deletions
(indels), and larger structural variations.
from all known taxonomic families. For many of these species this endeavor will yield their first
comprehensive genome-wide assembly that will serve as a crucial reference for subsequent
resequencing efforts aimed at detecting allelic variation within species [11]. The rich diversity in-
herent in nature presents an opportunity to integrate beneficial traits from wild populations into
cultivated elite varieties. This integration enhances the resilience of crops and forest trees to evolv-
ing climate patterns. As increasing numbers of genome sequences are compiled, greater poten-
tial to delve into genome regulation and variation arises, and consistent updates to reference
genome annotations are enabled by the Ensembl browser release 93. Emphasis will be placed
on disseminating genomic data to facilitate researcher-driven analyses.

Collecting phenotypic data for such a vast array of germplasm resources across diverse environ-
ments presents a formidable challenge. However, studies such as that of Lasky et al. [12] have
demonstrated that leveraging bioclimatic and soil gradient data of georeferenced sorghum land-
races can unveil genomic signatures associated with crop adaptability. Integrating genomics with
passport data, which provides genotypic identity information of accessions, offers a means to as-
sess the breeding potential of germplasm, even in the absence of traditional phenotypic data. En-
hanced AI-driven genomic prediction models, incorporating georeferenced passport data,
agroclimatic variables, and soil gradients, can simulate the performance of different germplasms,
thereby facilitating the selection of optimal breeding panels. Thus, this approach addresses a sig-
nificant constraint in genebank germplasm utilization, namely the scarcity of phenotype informa-
tion in target environments.

AI-enabled digitalization and collection of phenotyping data
Phenotypic data are essential for crop breeding, but face significant barriers that hinder full uti-
lization. Traditional plant phenotyping methods have long been viewed as a bottleneck in crop
breeding owing to their limited data acquisition capacity. However, the recent emergence of
plant phenomics represents a fundamental shift in this paradigm [2,13,14]. Plant phenomics,
which systematically studies phenotypes, holds promise for overcoming these limitations.
Phenomic platforms equipped with advanced imaging sensors have the potential to revolution-
ize large-scale phenotyping of various plant traits and environmental conditions (Figure 2A).
These platforms may utilize either stationary or mobile sensors. Towers and other fixed plat-
forms are commonly used to monitor growth phases because of their simplicity and ease of
maintenance. To illustrate, digital cameras mounted on a permanent phenotyping tower have
been used to monitor rice growth, nitrogen content, leaf area index, and the presence of the
rice bugs [15,16]. The fixed phenotyping tower is simple to set up and maintain, but it has re-
stricted crop information within defined locations. The rail-based field scanalyzer system for
field phenotyping, developed by Rothamsted Research, incorporates a sensor array compris-
ing a visible camera, a 3D laser scanner, a thermal IR (TIR) camera, a chlorophyll fluorescence
sensor, and a visible to the near-IR hyperspectral camera [17,18]. This setup enables compre-
hensive characterization of crop canopy development across all growth phases. In addition, a
Crop3D high-throughput crop phenotyping platform has been introduced that uses multiple
imaging sensors within a movable gantry system to quantify 3D plant and leaf structures, as
well as leaf temperature [19]. To address field coverage limitations, sensors are installed on
manually powered carts or self-propelled tractors. These platforms have successfully captured
canopy traits such as plant height, normalized difference vegetation index (NDVI), temperature,
reflectance spectra, and red-green-blue (RGB) imagery for soybean and wheat using a
phenocart equipped with diverse sensors [20]. However, various environmental factors, such
as light intensity, can impact on imaging platforms in open areas. The BreedVision technology
addresses this challenge by effectively blocking ambient light and conducting imaging within a
movable dark chamber [21]. This innovative system enables nondestructive measurement of
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Figure 2. Techniques for plant phenotyping and data analysis. (A) Advanced plant phenomics platforms for digitalization of phenomics and the acquisition of big
phenomics datasets. (B) Machine learning (ML)/deep learning (DL) architectures to predict key plant traits by an AI-based approach and a DL-based workflow to identify
spike numbers to narrow the phenome-to-genome knowledge gap. Abbreviations: Chl., chlorophyll; CNN, convolutional neural network; CT, computed tomography; IOU,
intersection over union; lidar, light detection and ranging; NDVI, normalized difference vegetation index; NMS, non-maximum suppression; pE, ___________; RGB, red-
green-blue; ROI, region of interest; RPN, region proposed network; SVI, standardized vegetation index; TIR, thermal IR; UAV, unmanned aerial vehicle.
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plant traits, including plant height, tiller density, grain yield, moisture content, and leaf color. It
utilizes a range of sensors such as 3D time-of-flight cameras, laser distance sensors, hyperspectral
imaging, and RGB sensors. However, specific restrictions are placed on vehicle-based platforms
based on field topology, weather, and soil conditions. Unmanned aerial vehicles (UAVs) offer a dy-
namic platform capable of rapidly gathering data over vast regions and producing high-resolution
photographs with pixel densities of ~1 mm. High-resolution UAV photography has simplified phe-
notyping tasks by providing detailed canopy color and texture features with high spatial and tem-
poral resolution from UAV platforms [22]. Consequently, high-resolution UAV photography has
found applications in various phenotyping tasks across several crops, such aswheat ear identifica-
tion and senescence quantification [23,24].
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To enable feature identification in some complex tasks, including stress phenotyping, ML tools
use processing methods to extract patterns and features from these large amounts of data.
Deep learning (DL) is valuable for many scientific research tasks because it is effective at
identifying complex structures within high-dimensional data [25]. The wide variability of plant
images obtained from diverse sensors poses a challenge to the application of particular ML
techniques [26]. Hence, workflows for feature identification have become more dependent
upon on DL tools. Various ML and DL architectures, including random forest (RF), neural network
(NN), k-nearest neighbor (KNN), partial least squares (PLS), and support vector machine (SVM),
alongside models such as ResNet-50, ResNetXt-101, AlexNet, DenseNet, GoogLeNet, VGG-
16, and YOLOV5, have been used to predict essential crop traits (Figure 2B). For example,
convolutional neural networks (CNNs) have been applied in RGB image analysis to segment
roots of chicory, wheat, and rapeseed [27–29], leaf counting [30], and classification and quanti-
fication of biotic and abiotic stresses in leaves across various crops [31], as well as predicting
spike number and yield of individual barley and wheat plants [24,32]. For spike identification,
the Faster R-CCN model labeled the training set images using supervised learning to enhance
model accuracy (Figure 2B). Screening plant responses to different stresses can aid in selection
decisions for developing climate-resilient cultivars, a crucial task in many breeding programs. A
CNN was used to provide an interpretable diagnosis of biotic stress in individual soybean plants
by integrating saliency maps into the analysis of multispectral and hyperspectral data [33,34]. To
characterize the response of sorghum to drought stress, researchers have used linear discrimi-
nant analysis (LDA) and PLS models [35]. A CNN was used to generate interpretable classifica-
tions of biotic and abiotic stressors in soybean leaves by isolating the top-k feature maps
learned by the model [36]. The nitrogen nutrition index in rice was estimated using a combination
of ML algorithms including RF, NN, KNN, PLS, and SVM to enhance nitrogen use efficiency
[37,38]. In maize, above-ground biomass was estimated using PLS and RF models [34]. YOLO
V5-CAcT, an innovative network architecture, has emerged as a solution for swiftly identifying dis-
eases in field crops. Implemented on the novel CNN (NCNN) DL platform, it has become an effec-
tive tool for combating crop diseases at an industrial level. In addition, SVMs were used for 3D
point cloud analysis to estimate yield and characterize the geometry of apple canopies [39],
and both SVMs and Gaussian processes proved to be successful in analyzing TIR images to de-
tect drought stress in spinach [40].

Recent studies demonstrate that combining data from different sources yields superior re-
sults than using individual sources alone. For example, integrating RGB, TIR, and multi-
spectral data through a deep neural network (DNN) improved soybean yield prediction
accuracy [41]. Yoosefzadeh et al. [42] also found significant associations between highly
heritable secondary characteristics (hyperspectral vegetation indices, HVIs) and soybean
seed yield and fresh biomass production. It creates ensemble-bagging (EB) and DNN
methods to anticipate HVI data throughout the early phases of growth. The optimal HVI
values are related to the strength Pareto evolutionary algorithm 2 (SPEA2) for maximum
yield and biomass.

Similar advances are seen with the use of extreme learning machines for estimating soybean ni-
trogen concentration, leaf area index, aboveground biomass, and chlorophyll content [43]. To
better grasp the biological mechanisms behind desirable traits and plant responses to environ-
mental stresses, integration of phenomic and genomic datasets, initially separate, is proposed
[44,45]. These integration efforts should encompass environmental data, including climate
types, because the phenotype of a plant is influenced by the interaction between its genotype
and its environment (G × E). Such integration is crucial for designing crop ideotypes optimized
for specific environments in the face of rapid climate change [45].
Trends in Genetics, Month 2024, Vol. xx, No. xx 5

CellPress logo


Trends in Genetics
OPEN ACCESS
AI-enabled predictions to explain genomic data
Numerous studies have demonstrated the potential applications of AI in interpreting biochemical
data to advance the understanding of plant stress biology. For instance, AI has been effectively
used to forecast genomic crossovers in maternal and parental maize plants, thus aiding in the
identification of genomic regions with elevated mutation rates [46]. Furthermore, based on the
DNA methylation patterns of maize plants growing under stress, researchers have used AI ap-
proaches to identify and characterize genomic areas, thereby differentiating between functional
genes and pseudogenes [47]. Similar to this, Uygun et al. [48] used AI algorithms to examine
the expression patterns of important genes to predict gene promoters and cis-regulatory ele-
ments in Arabidopsis thaliana and maize plants. In addition, by identifying tissue-specific varia-
tions in biosynthetic genes, such as those linked to nitrogen utilization efficiency, starch
biosynthesis, and secondary metabolites in A. thaliana and rice, studies have demonstrated the
value of AI in deciphering plant metabolic regulatory networks [49,50]. Similarly, Meena et al.
[51] demonstrated the crucial role that AI can play in bioenergy management by utilizing AI to
optimize biomass generation by using a variety of plant species and algal blooms to increase
biofuel production.

Sequencing technology is advancing swiftly, and long-read sequencing has emerged as the pre-
dominant method in crop breeding. This technology offers the advantage of gaining more structural
variations and haplotype data than short-read sequencing, but introduces more errors and chal-
lenges for variant identification. Marked by the ability to extract meaningful patterns from complex
data, methods building on DL have been put forth to enhance the accuracy and efficiency of variant
calling from short-read sequencing [52] and long-read sequencing [53,54]. These approaches use
different strategies, including haplotype-aware modeling, image-based representation, local realign-
ment, and full-alignment, to leverage the complex information in long reads and reduce the influence
of errors, demonstrating superior performance over existing tools and enabling the discovery of
novel variants in challenging-to-map regions of the genome [55]. A primary drawback is that these
tools are primarily trained on human somatic cells. The variant calling identified in Table 1 requires
thorough revision for use in crop plants. Clearly, the enhanced accuracy in variant calling will improve
the precision of genomic selection (GS) and marker-assisted breeding, thus enabling breeders to
make informed decisions for crop improvement.

Identifying single-nucleotide polymorphisms (SNPs) and small insertion/deletion (indel) variants re-
mains a significant challenge using both second- and third-generation sequencing technologies.
Artificial neural networks (ANNs) are emerging as a solution to this challenge. Recently, a CNN
model called Clairvoyante was proposed by Luo et al. [56] for predicting SNP or indel variations,
zygosity, and indel length from long-read alignments. They evaluated Clairvoyante using data
from Illumina, PacBio, and Oxford Nanopore sequencing platforms, focusing on finding common
variant sites from the 1000 Genomes Project dataset with a minor allele frequency of at least 5%.

Another significant application of ANNs in variant calling was demonstrated by Poplin et al. [52]
and their DeepVariant package. DeepVariant uses a sophisticated approach that calculates the
likelihood of three possible allele combinations at each variant site. This tool learns to distin-
guish between homozygous or heterozygous alleles and the reference and homozygous alleles
within the variations by analyzing statistical correlations between pictures of reads surrounding
putative variants and genuine genotype calls. Furthermore, ML algorithms extend beyond var-
iant detection in long-read sequencing practices, as evidenced by their application in popula-
tion genetics studies. Supervised ML approaches have successfully examined recombination
rates within target genomes. For instance, Schrider and Kern [57] used a RF classifier to differ-
entiate recombination rate levels in Drosophila melanogaster using DNA motifs. The
6 Trends in Genetics, Month 2024, Vol. xx, No. xx
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Table 1. Representative methods used in AI-enabled plant breeding

Domain Organism Technology Model/method Problem to solve Refs

High-throughput
phenotyping

Universal Weakly
supervised
DL

ResNet-50
CNN
Transformer

Reduce manual labeling efforts
Improve the accuracy of
measurement

[139]
[140]
[141]

Multi-omic data
integration

Universal Autoencoder
neural
networks

CNN
GCNN

Establish a roadmap for utilizing
multi-omic data in DL methods

[103]

Variant calling Universal DL DeepVariant
Clair3
Pepper
NanoCaller

Development of fast and precise
variant calling tools

[52]
[54]
[55]
[53]

Gene discovery
and functional
prediction

Spartina
alterniflora

DL DeepGOplus Identification of candidate genes
underlying specific biological
processes

[100]

Causal variant
inference

Maize Pre-trained
model
ML

UniRep
Random
forest
PICNC

Prioritization of candidate causal
variants

[102]

Genomic
prediction

Universal DL CNN
DNNGP

Achieve higher performance with
multi-omic data

[123]

Optimizing
genome-editing
tools

Universal DL AlphaFold Discovery or optimization of
protein function

[99]

Genomic
intelligent design

Model
species

DL GAN
FGAN

Promoter design or optimization
of protein function

[79]
[80]

Transposon
detection

Universal DL Inpactor2
TEsorter

Identification of transposable
elements

[77]
[78]
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combination of genomics and ML to produce innovative approaches for predicting agricultural
diseases and simplifying bioinformatic pipelines without coding expertise is very important.
Noteworthy technology providers in this field include Trace Genomics and Sequentia Biotech.
Trace Genomics is featured in soil health applications where patented ML algorithms are used
to pinpoint crucial elements influencing crop performance. By contrast, Sequentia Biotech of-
fers solutions such as AI RNA-seq (AIR) to streamline the procedures for data generation and
interpretation in transcriptomic studies [58]. The future of ML may entail addressing multiple
species simultaneously. DL methods may be used for objectives such as knowledge transfer
from model plants to target crops or comparative genomics studies.

Integration of multi-omic big data in plant breeding
At the biochemical level, 'omics' encompasses diverse molecular data sources such as genomics,
epigenomics, protein–DNA interactions, transcriptomics, proteomics, and metabolomics. In the
past decade a vast amount of omic data have been generated, inundating the web with transcrip-
tomic, genomic, proteomic, and metabolomic information [59]. Recently, biology has evolved into
an information-intensive science because of the massive datasets generated by high-throughput
sub-molecular biological experiments across various domains, including genomics, transcripto-
mics, proteomics, and metabolomics. In bioinformatics, the inventory of components at the ge-
nome, transcriptome, proteome, and metabolome levels is gradually becoming comprehensive
and invaluable to researchers [60]. ML is frequently used to assess vast datasets because of
their size, complexity, and the requirement for combined interpretation. Even within each omic
technology, several profiling techniques have also matured, in addition to RNA-seq for genome-
wide gene expression, chromatin immunoprecipitation with deep sequencing (ChIP-seq) [61],
Trends in Genetics, Month 2024, Vol. xx, No. xx 7
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DNA affinity purification sequencing (DAP-seq) [62], and assay for transposase-accessible
chromatin sequencing (ATAC-seq) [63–65]. Access to ever more detailed information on systems
biology, from single genetic elements to regulatory networks, offers us unprecedented chances to
capture the true biological substance underlying phenotypic variation. However, for speeding up
crop breeding, it is still challenging to properly integrate various data layers, connect them to stress
reactions in the environment, and precisely model the overall system.

One area whereML has demonstrated utility is in identifying various types of genomic regions. For
instance, in maize, the live genes and dead pseudogenes can be classified by an ML model
trained on DNA methylation features [47]. ML-based method has also been developed to predict
the crossover probability along a chromosome [66]. In addition, ML is starting to find applications
in population genetics, although predominantly in humans [67]. One application of ML in plants
was to predict the near-complete fixation of mutations retained by natural selection [68]. These
instances highlight how ML, beyond its conventional role in the areas of gene and genome anno-
tation [69], can be used to further explore genome function, complementing traditional compar-
ative genomics approaches.

AI-enabled bridging of the genotype–phenotype gap
There has been growing interest in utilizing AI for precise, non-destructive estimation of crop traits and
genetic studies. The development of cultivars with high yield potential that are resilient to climate
change relies heavily on genetic improvements through the identification of novel alleles and
genomic-assisted selections in crop breeding. Several studies have successfully applied AI-based
approaches to hyperspectral and RGBdatasets to predict early wheat yield and conduct quantitative
genomic analysis, and identified novel alleles in wheat [70,71]. Lei et al. [24] implemented an auto-
matic spike-counting system using quantitative genetic analysis with RGB images from a ground-
based camera, and improved the accuracy and generalization of the Faster R-CNN model by in-
creasing training data and annotations (Figure 2B). Accurate disease screening is crucial for develop-
ing disease-resistant cultivars and has been addressed through a genome-wide association study
(GWAS) analysis using DL-based detection of sudden death syndrome (SDS) in soybean [72], and
revealed significant SNPs near candidate SDS genes. In addition, studies have utilized multimodal
DL for yield predictions, demonstrating that methods such as phenotype–genotypemultiple instance
learning (PheGeMIL), leave-one-environment-out (LOEO), support vector regression (SVR), and gra-
dient boostingmachine (GBM) leverage phenotypic observations to enhance genomic predictions for
wheat yield [73–75]. In summary, integrating phenomics, genomics, and AI offers a promising ap-
proach to monitor crop productivity, assess responses to abiotic and biotic stressors, and identify
novel genes and quantitative trait loci (QTLs). This integrated approach could pave the way for accel-
erating crop breeding efforts to develop climate-resilient crops [76].

'Missing heritability' refers to the instance where all the genetic variants cannot completely ac-
count for the heritability of complex traits, and is a major bottleneck in genetic studies. In such
cases, integrating transposons and epigenetic mutations such as DNA methylation can offer
more comprehensive information to explain the genetic foundation of phenotypes. There
have been massive advances in the identification and classification of transposons in plants
using DL, including Inpactor2 [77] and TEsorter [78]. In addition to AI-enabled gene identifica-
tion to bridge the genome–phenome gap, AI has promising applications in functional genomics
of the genes identified to construct a genomic intelligent design. For instance, generative ad-
versarial networks (GANs) were used to optimize and enhance genomic functions via synthetic
promoter design in Escherichia coli [79]. The model, guided by sequence features gleaned from
natural promoters, includes interactions between nucleotides at different positions and designs
novel synthetic promoters in silico. Moreover, the feedback GAN (FBGAN) introduces a novel
8 Trends in Genetics, Month 2024, Vol. xx, No. xx
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feedback-loop organization to optimize protein functions by generating synthetic DNA se-
quences encoding proteins of variable length and optimizing them using an external function
analyzer [80]. There is still a need for further work to adapt cutting-edge synthetic methods
to plant biology and crop improvement [81].

Functional genomics and gene mining using AI
Several ML methodologies have emerged to prioritize genes relevant to agronomic traits, such as
leveraging gene functions [82], exploring protein interactions [83], and incorporating gene anno-
tation and sequence variation [84]. An intriguing avenue for further exploration lies in integrating
evolutionary insights intoMLmodels. For instance, recent research has demonstrated the predic-
tive power of leveraging knowledge from well-annotated species to infer gene functions in less-
characterized species, particularly in predicting specialized metabolism genes.

What distinguishes many of the studies is their dual focus on optimizing prediction performance
and unraveling biologically meaningful features underlying the data. For instance, Lin et al. [84]
identified transcription factors as being pivotal in prioritizing genes associated with specific traits
in A. thaliana and rice. Similarly, Demirci et al. [66] found that particular DNA shape features pre-
dicted crossover occurrence across various plant species such as A. thaliana, tomato, maize and
rice, highlighting both commonalities and species-specific nuances. Some studies utilized various
machine learning models to identify genes responsible for abiotic stresses [85–87]. Such insights
gleaned from ML models pave the way for generating testable hypotheses, such as identifying
genomic regions, candidate genes, or protein residues for further experimental validation.

An exciting frontier where ML plays a crucial role is in single-cell RNA sequencing [88,89], en-
abling the exploration of developmental processes and responses to environmental stimuli within
complex, heterogeneous tissues. The resulting datasets are comprehensive, and encompass
data from thousands of cells and tens of thousands of genes. Examining such data often encom-
passes the application of unsupervised ML techniques. Unlike many studies where a specific
'label' is predicted, unsupervised ML methods aim to identify patterns that can help to organize
and interpret data lacking predefined labels. Examples of such approaches include clustering
and manifold learning approaches that seek to uncover underlying structures within the data in
a nonlinear manner similar to principal component analysis [90].

Although metabolomics encounters a challenge owing to the unknown characteristics of several
components, ML offers solutions that integrate and analyze metabolomic data. ML methodolo-
gies enable the prediction of metabolic pathways, exemplified by studies such as those focusing
on tomatoes [91]. ML is anticipated to make significant contributions in multi-omic analysis which
integrates transcriptomic, proteomic, and metabolomic data, as illustrated by McLoughlin et al.
[92]. They used extensive multi-omic analysis to examine maize autophagy mutants cultivated
under nitrogen-replete and -starvation conditions to ascertain how cells/tissues depend on au-
tophagy. Even in the absence of stress, plants lacking the essential autophagy component
ATG12 showed broad abnormalities in the leaf metabolome, with a focus on lipid turnover prod-
ucts and secondary metabolites. These changes were supported by significant modifications in
the transcriptome and/or proteome. By comparing the abundances of mRNA and proteins, it
was possible to identify specific protein targets for autophagic clearance, as well as protein com-
plexes and organelles, and to identify many processes regulated by this catabolism.

ThemlDNARpackage, short forML-based differential network analysis, used anRF algorithm to pin-
point salt stress-related genes in A. thaliana [93]. Another innovative tactic involves amalgamating
multiple gene regulation networks (GRNs), along with prioritization algorithms, which led to the
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identification and validation of OsbHLH148, an important drought-related transcription factor in rice
[94]. In contrast to gene discovery relying on GRNs, GWAS offers a comparatively direct method
to detect genes associated with traits and natural variations natural variants for molecular breeding.
Nonetheless, a challenge arises from the possibility that a QTL identified via GWASmay encompass
numerous genes owing to linkage disequilibrium (LD). Selecting candidate genes for validation is still a
major difficulty in biological research. To tackle this challenge, various ML-based methods targeting
GWAS-identified QTLs have been developed for gene prioritization and causal mutation elucidation.
These ML approaches encompass penalized regression, gradient boosting machines (GBMs),
Bayesian approaches, and DL [95]. ML-based gene prioritization relies on compiling features from
known genes and the causal variants underlying phenotypic variation [96]. Taking QTG-Finder as
an example – aGWAS results explainer equippedwith variousMLmethods [84] – this is able to utilize
a feature set comprising 28 attributes derived from genomic data of A. thaliana, including DNA poly-
morphisms, functional annotations, cofunction networks, and evolutionary conservation. An en-
hanced version, QTG-Finder2, incorporates orthologous information from multiple model plants to
enrich the feature set for comprehensive gene discovery [97]. QTG-Finder2 effectively prioritizes
genes identified throughGWAS in non-model plant species, thus addressing the challenge of scarce
causal gene information. However, the limited prior knowledge is still a significant challenge in ML-
based methods for gene discovery in plants. Such an issue may be overcome in the future by
semi-supervised learning strategies such as positive-unlabeled (PU) learning [98].

Recent studies have underscored the pivotal role of ML and DL techniques in addressing specific
biological challenges, particularly in the identification of salt-tolerance genes in plants. A LLM-
based gene function prediction model was developed and deployed to identify differentially
expressed genes under salt stress, and unraveled crucial pathways [99]. Yang et al. [100] also uti-
lized a DL-based gene annotation tool, DeepGOPlus, to detect high-affinity K+ transporters
(HKTs) linked to salt tolerance, and revealed 16 Spartina alterniflora (Sa)HKT genes with varied ex-
pression patterns and ion transport preferences. Besides using protein sequences as the input,
Gao et al. [85] merged ML with coevolutionary information about genes to pinpoint salt stress-
related genes, and their study emphasized the enrichment of genes associated with ion transport
and detoxification pathways. These findings highlight the indispensable role of computational meth-
odologies in unraveling the molecular intricacies of salt-tolerance mechanisms in S. alterniflora and
offer invaluable insights into plant functional genomics. These works demonstrate the flexibility of
DL and ML to use various data types to study key genes underlying plant abiotic stress.

Finding excellent alleles and causal variants from omic data
Constructing genetic networks from multi-omic data is often more potent than single-omic applica-
tions in uncovering complex relationships in biological systems. Nonetheless, the ultra-high dimension-
ality of omic data often causes the 'curse of dimensionality' [101], posing significant challenges to
single-omic data and integrated multi-omic data analyses [102]. Therefore, reducing dimensionality
is always the first step in multi-omic data analysis. Kang et al. [103] identified a roadmap for multi-
omic data integration, encompassing denoising data with autoencoders and extracting features with
DLmethods such asCNNs. Although this roadmapwas proposed for biomedical data, it offers a valu-
able touchstone for harnessing large datasets in plant studies.With powerful data integrationmethods,
multi-omic analysis can often providemore accurate predictions than single-omic analysis. This is likely
because these methods include complex interactions and dependencies between various biological
data types, thereby offering a more comprehensive and holistic understanding of biological systems.

Functional investigations of plant genes, particularly those underlying agronomic traits, offer essential
information for breeding crops via genetic modification and genome editing. Characterizing gene func-
tions from multi-omic data is foundational to the discovery of genes implicated in specific processes.
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Leveraging the power of DL, Yang et al. [100] successfully used a DL-based model to examine multi-
omic data, and identified a series of salt tolerance-related genes in non-model halophytic plants and
validated their functions. DL has also been applied to directly characterize causal phenotypic variants,
which is a challenging but valuable goal. For instance, theML-basedmethodPICNC (prediction ofmu-
tation impact by calibrated nucleotide conservation) can infer functional alterations caused by muta-
tions in maize. It integrates mutation importance information obtained through UniRep, a long short-
term memory (LSTM)-based mutation/protein structure assessment method [102]. Foundational AI
tools can be used to create more advanced tools for biological interpretation.

Practical plant breeding by predicting phenotypes using AI-enabled genomic
selection
Marker-assisted selection (MAS) and GS are two primary marker-based breeding techniques used
to characterize plants with desirable characteristics. MAS faces limitations in detecting genes with
relatively small effects on complex traits. Whenmarkers linked to these traits capture only a fraction
of genetic variation, MAS may underperform compared to phenotypic selection [104].

To address the limitation of disparity in prediction accuracy between models, the predominant ap-
proach involves conducting repeated trials using diverse statistical models to identify an optimal sce-
nario for target phenotypic traits. GS are broadly classified into parametric and nonparametric
methods based on the utilization of prior information and parameter settings [105]. Parametric
methods include regularized linear regression (RLR) models, such as ridge regression (RR) and
least absolute shrinkage and selection operator (LASSO) [106], which address the over-
parameterization issue inherent in simple linear models. ML-based statistical models, including
SVM [107], ANN [108], and RF [109] have found applications in plant breeding. There are obstacles
to finding the best statistical approach because crops, cultivars, habitats, populations, and markers
vary. Therefore, while using GS, breeders need to compare and choose practical statistical ap-
proaches that are tailored to each circumstance.

ML utilizes statistical approaches to allow systems to learn from data without explicit programming.
Using a sample dataset, ML produces models to explore algorithms that can learn from accessible
data and produce predictions for unseen data. ML-based approaches have enhanced prediction
accuracy than traditional GS [110]. Unlike conventional statistical models, ML offers flexibility to
allow complex relationships between input data and outcomes. As the scale of genome data ex-
pands and complexities emerge, the development of informative and predictive models becomes
challenging. Therefore, the use of ML is on the rise because it offers a crucial alternative owing to its
flexibility and usefulness in navigating these complexities [111] via modifying obscure patterns of
unidentified structures that parametric models are unable to include [112].

Traditional statistical approaches struggle to examine the genetic foundation of plant quantitative
traits, especially in complex scenarios involving pleiotropic genes, epistasis, and gene–environment
(G x E) interactions. The challenge lies in identifying all marker effects, producing the 'large P, small
N' issue, as well as possible over-parameterization. ML approaches offer a solution by leveraging
repeated experiences to enhance prediction accuracy [113]. ML algorithms are categorized into
supervised and unsupervised learning approaches: supervised learning is designed to predict tar-
get values according to input data, whereas unsupervised learning uncovers groupings and asso-
ciations among input variables without output variables. ML-based GS methods mainly consist of
supervised learning models [114].

SVM, a typical ML-based model, provides benefits in both classification and regression tasks.
What differentiates SVM is its specialization in detecting subtle patterns within complex and
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diverse datasets. SVM develops decision boundaries using various feature vectors to produce
accurate predictions. This type of method enhances the non-linear formation between pheno-
types and genotypes by utilizing various kernel functions [115]. In recent years, ANN methods
have showed their potential in the application of GS. ANNs can identify patterns in data and gen-
erate predictions for complex functions, thus serving as universal approximators [108]. In GS,
these functions accurately detect factors such as epistasis or dominance in genomic markers.
Furthermore, they do not rely on assumptions about the phenotypic distribution, and using
ANNs in GS enables effective estimation of the impact of complex interactions [116].

Several studies have used DL to analyzeGS. Montesinos-López et al. [117] used a densely coupled
network architecture to compare genomic best linear unbiased prediction (gBLUP) and DLmodels.
Nine published genomic datasets (six wheat and threemaize datasets) were evaluated in this study.
DL demonstrated better prediction accuracy across six of nine datasets when G × E interactions
were ignored. Another study uncovered that SVM and multilayer perceptron (MLP) exhibit superior
computational efficiency than other approaches [118]. The current body of literature on DL-based
GS methods is sparse in comparing prediction accuracy with traditional statistical approaches.
Therefore, further research will be necessary to bridge this gap. DL builds upon ANNs by integrating
three or more ANNs into a DNN structure [119]. Popular DL architectures in GS are MLPs, CNNs,
and recurrent neural networks (RNNs) [120]. Typically supervised, MLPs integrate at least one hid-
den layer and are excellent for various applications owing to their simplicity and effectiveness in
prediction tasks. Despite their versatility, MLPs may overfit during training, potentially reducing
accuracy when applied to real-world datasets [121].

CNNs are primarily utilized in tasks associated with computer vision which take images or video
data as the input. A key aspect of CNNs is their efficiency achieved through input size reduction
and parameter sharing. This optimization limits the number of parameters that require estimation,
thus improving computational efficiency. Typical CNN architectures are composed of three pri-
mary operations: convolution, nonlinear transformation, and pooling. These operations reduce
input size without compromising pertinent information, thereby facilitating rapid training through
parameter reduction [122].

RNNs do not strictly propagate in a single direction: they incorporate feedback loops that enable
signals to travel both forward and backward via synaptic connections. Therefore, training RNNs re-
quires significant computational resources [120]. DNN genomic prediction (DNNGP) is a founda-
tional DL-based genome selection method that can integrate multi-omic data to predict plant
phenotypes [123]. This method integrates a well-designed algorithm structure to limit overfitting
and enhance convergence speed. It significantly outperforms conventional approaches in predic-
tion accuracy, especially when dealing with large populations. Such AI-based tools will gradually
replace traditional approaches in plant breeding, especially in the context of exponentially increas-
ing volumes of biological data. Using prior knowledge of gene functions, expression, and interac-
tions is helpful to guide the genomic prediction models. This will assist in reducing the
dimensionality and complexity of the data, as well as elevating the biological interpretability and re-
liability of the predictions [124]. AI approaches can also integrate prior knowledge into genomic
predictionmodels using diverse strategies, including defining kernel functions, partitioning genomic
variance, or designing network architectures, according to the available biological information in-
cluding gene ontology, transcriptomic, and GWAS data [124–126].

Although only a limited number of GS programs currently use DL, it is increasingly recognized as a
promising approach for genetic prediction. First, DL models efficiently handle raw image data
without preprocessing. Second, DL captures genetic diversity without additional predictor
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terms, thus enabling the representation of non-additive effects and complex genetic relationships
that is necessary for comprehensive genetic evaluation. Third, DL structures like CNNs acquire
linkage disequilibrium throughout neighboring SNPs. Last, specific DL structures such as
CNNs share parameters, thus lowering the number of parameters requiring estimation. However,
using DL in GS is accompanied by caveats. DL is more susceptible to overfitting than typical sta-
tistical models, but this can be mitigated by using Bayesian methods. Moreover, implementing
and optimizing DL models requires substantial experience because of the requirement for
selecting various hyperparameters and the adjustment processes involved. To leverage DL effec-
tively in GS, further iterative and collaborative examinations are required, along with the acquisi-
tion of more extensive datasets. These datasets should include phenotypic information and
various omic, climate, and breeder experience data. Moreover, optimizing the DLmodel topology
is necessary for designing an efficient framework for GS [120].

Applications of AI in gene editing
Traditional breeding methods such as mutagenesis, hybridization, and genetic engineering/trans-
genic breeding have made substantial contributions to improving crop yield and quality. However,
they suffer from drawbacks such as extended breeding cycles, high randomness, low precision, in-
complete gene function loss, and laborious screening processes [127,128]. The rise of genome se-
quencing technologies has opened avenues for precise and efficient molecular breeding, and has
gained favor among breeders. Notably, the refinement of CRISPR/Cas9 technology has revolution-
ized breeding efforts and has significantly advanced research in crop quality enhancement [129].

The development of gene editing systems has accelerated progress in molecular biology and
breeding. Site-directed nucleases (SDNs) are categorized into five classes – homing endonucleases
(HEs), mega-nucleases (MNs), zinc-finger nucleases (ZFNs), transcription activator-like effector nucle-
ases (TALENs), and CRISPR/Cas9 – and play a pivotal role in genome-editing technology [130,131].
HEs and MNs are rare endonucleases that recognize large DNA sequences, posing challenges in
identifying their target sites [132]. ZFNs, the first generation of genome-editing nucleases, utilize
small zinc-finger protein motifs, regulated by zinc ions, that bind to DNA in a sequence-specific man-
ner. Unlike HEs and MNs, multiple ZFNs can be assembled into complexes, thereby enhancing DNA
binding specificity. Similarly, TALENs were developed by fusing a TALE module to the FokI DNA
cleavage domain, resulting in an effective programmable nuclease [133].

AI has been used to characterize structural information and optimize protein functionality.
AlphaFold2 [134], a highly accurate protein structure prediction tool, is a remarkable application
of AI in biology and now operates as a common 'infrastructure' for biological research. Another
breakthrough technology, genome editing, has opened new doors for crop enhancement. AI-
assisted genome editing and synthetic biology may allow the production of ideal plants through
genetic modification [135]. However, producing breeding materials via genome editing may ne-
cessitate continuously optimized tools with higher efficiency. Huang et al. [99] utilized
AlphaFold2-predicted protein structure data to unveil novel functional clusters of deaminases,
and utilized this information to develop more efficient base editors. More recently, the first de
novo generated gene editor, OpenCRISPR-1, was designed by a LLM trained on >1 million
CRISPR operons [136], starting the new chapter in directly designing proteins with LLMs.

Moreover, designing genome editors with compact structures is essential for improved precision
and efficiency in genetic manipulation. AI technologies can potentially revolutionize the design of
compact and comprehensive genome-editing tools. Through protein structure prediction ap-
proaches, directly redesigning the proteins that underlie crucial agronomic traits is more straight-
forward. However, optimizing these proteins requires a large amount of specific training, and
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Outstanding questions
How can AI be practically integrated into
breeding programs to enable breeders
and farmers to leverage advanced tech-
nologies for crop improvement?

How can AI techniques be tailored and
optimized to extract meaningful insights
and drive advances in plant phenomics
research, especially when dealing with
limited or small datasets, thus paving
the way for more precise and targeted
crop improvement strategies?'

How can AI-driven image analysis and
computer vision techniques assist in
identifying subtle phenotypic traits in
plants, ultimately aiding breeders to se-
ensuring that the redesigned protein performs adequately in vivo requires multidisciplinary collab-
oration and a comprehensive knowledge map. However, protein structure prediction tools can
help to improve crop design, and it is reasonable to infer that AI-driven protein engineering will
be helpful in crop enhancement in the future.

Concluding remarks
AI technologies could revolutionize public sector plant breeding programs (Box 1) such as those
under the One CGIAR (Consultative Group for International Agricultural Research) program. Data-
driven decentralized breeding programs such as these can predict crop performance better than
conventional GS [137]. AI-enabled breeding platforms are accelerating the breeding process by
deploying advanced computing and analysis algorithms. The promise of AI in gene discovery and
allele mining is well defined; however, the true promise of AI is in assisting the biological design of
future crop cultivars that are well suited for predicted environments. Further challenges will be to
(i) simulate and characterize the diversity from genebanks for predicted environments to introduce
novel traits into cultivars without linkage drag, (ii) construct the capacity and trained human
Box 1. Evolution of plant breeding

Plant breeding has witnessed great developments, especially during the past two decades. Historically, breeding eras can be
divided into four different groups (Figure I) [142,143]. The first breeding era started with the start of agriculture ~10 000 years
ago, where a major activity was domestication and selection by the common people. Later genomic studies identified a suite
of traits selected during this era, referred as 'domestication syndrome', that were controlled by few genes with major effects.
The foundation of the second breeding era was built on Mendelian genetics and Fisher's quantitative genetics by under-
standing the genetic basis of complex traits. These principles led to the development of experimental designs, conscious hy-
bridization, pedigree selection, and the use of more robust phenotyping methods. A major breakthrough in this era was the
so-called Green Revolution in cereals by developing high-yielding wheat and rice cultivars, and by heterosis breeding inmany
other crops. The third era was started with the advent of molecular markers to select phenotypes based on genomic infor-
mation. This era revolutionized plant breeding by marker-assisted selection and mapping genes of complex traits for use in
breeding. Modern phenotyping methods were designed for automated and robust data collection. Advances in genome se-
quencing and genotyping technologies led to the development of genomic selection (GS) which emerged as a rewarding
breeding strategy that has been particularly significant in plant and livestock breeding, especially when dealing with complex
traits. The latest era of plant breeding is influenced by big data becausemassive phenotypic and genotypic data generation is
now very cheap and convenient. This era also witnessed the precise breeding by gene-editing technologies. AI is believed to
be the indispensable tool to harness the benefits of these data technologies to accelerate genetic gain.

TrendsTrends inin GeneticsGenetics

Figure I. The four plant breeding eras and the key breeding strategies for each era. Abbreviation: G-to-P, gene to
phenotype.
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lect for complex traits such as drought
tolerance or disease resistance?

What potential does AI have in utilizing
ever-growing multi-omic data to facili-
tate the discovery of novel genetic re-
sources and the improvement of rapid
and precise GS?

How well do AI models trained on data
from one environment or crop species
generalize to other environments or
species? What strategies can be used
to improve the transferability and ro-
bustness of AI models across diverse
genetic backgrounds and environmen-
tal conditions?

To what extent can plant breeding
curriculums be designed to enable
future plant breeders to fully harness
the potential of new AI technologies?

How can we make AI technologies ac-
cessible and easy to use in public sec-
tor breeding programs by investing
resources?

When will AI-enabled plant breeding
products be available on the market?
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Box 2. Tools for uncovering patterns in complex data

As we accumulate more and more data, the need grows for tools with which we can discover useful and possibly un-
expected patterns in those data and report back to farmers in a timely and useful fashion. This can be done by using
tools for data mining [144] and data visualization [145]. However, when working with big data, the Bonferroni principle
[146] must be remembered: if you look hard enough for interesting patterns, you will find them. Many of these corre-
lations may be spurious, and researchers need to ensure adequate data support. Owing to the enormity of some
datasets, most available software cannot handle them entirely at once. Hence, it is crucial to devise an automated
pipeline for extracting smaller subsets of data through data mining. This involves four main tasks: (i) identifying interest-
ing relationships among variables in extensive datasets (i.e., association), (ii) segmenting datasets into discrete groups
(i.e., clustering), (iii) assigning observations to these groups (i.e., classification), and (iv) predicting real-value outputs
based on attributes of observational units (i.e., regression). For instance, Google developed MapReduce [147] to pro-
cess vast amounts of raw web data into more manageable sets of key–value pairs. The MapReduce algorithm is ac-
tually a simple word-count algorithm that easily can be parallelized and scaled, and can be repurposed to process
many different data types with very little effort. Association analysis in a data-mining context [148] is based principally
on counting methods, which is not equivalent to genome-wide association analysis [149]. Clustering methods, exem-
plified by the work of [150], aim to categorize items into cohesive groups where items within a group share similarity,
whereas those in separate groups exhibit dissimilarities. In partitional clustering, items are allocated to individual
groups, as in the case of calling SNP genotypes. On the other hand, hierarchical clustering arranges items in a hierar-
chical or tree-like structure, allowing them to belong to multiple groups, a technique that is commonly used to illustrate
species relationships. Classification models [142] use rules to assign individuals into classes based on their attributes,
and typically involve training and validation steps. Numerous classification techniques are available, encompassing
Bayesian belief networks, decision trees, nearest-neighbor classification, neural networks, rule-based classification,
and support vector machines. All these methods are adaptable to MapReduce frameworks. The outcomes generated
could then be utilized in regression models [151] that are commonly used in animal breeding for predicting real-value
outputs such as breeding values and feed intake.
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resources to efficiently utilize computational power for AI-enabled predictive breeding, (iii) offer mul-
tidisciplinary AI training to breeding teams engaged in designing future crop cultivars (Box 2), and (iv)
produce a unified plant breeding cyber-infrastructure instead of data islands (see Outstanding
questions). The utilization of AI has also demonstrated great promise in predicting the best cropping
patterns and systems by integrating big data obtained from physical sensors, UAV platforms, and
Internet of Things (IoT) devices under diverse genotype × environment × management practices
[138]. This would complement the AI-based genetic innovations to obtain the required rate of ge-
netic gain to meet the food and nutrition challenges of the next decade.
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